Skip to main content

Evolution of Computers

 


Blaise Pascal invented the first mechanical adding machine in 1642.

First mechanical adding machine



Later, in the year 1671, Baron Gottfried Wilhelm von Leibniz of Germany invented the first calculator for multiplication.

First calculator for multiplication



Keyboard machines originated in the United states around 1880 and we use them even today. Around the same period, Herman Hollerith came up with the concept of punched cards that computers used extensively a input medium even in late 1970s. Business machines and calculators made their appearance in Europe and America towards the end of the nineteenth century.

Charles Babbage, a nineteenth century professor at Cambridge University, is considered the Father of modern digital programmable computers. He had employed a group of clerks for preparing mathematical statistical tables. Babbage had to spend several hours checking these tables because even utmost care and precautions could not eliminate human errors. Soon he became dissatisfied and exasperated with this type of monotonous job. As a result, he started thinking about building a machine that could compute tables guaranteed to be error free. In this process, Babbage designed a "Difference Engine" in the year 1822 that could produce reliable tables.

Difference Engine



In 1842, Babbage come out with his new idea of a completely automatic analytical Engine for performing basic arithmetic functions for many mathematical problems at an average speed of 60 additions per minute. Unfortunately, he was unable to produce a working model of this machine because the precision engineering required manufacture the machine was not available during that period. However his efforts established a number of principles that are fundamental to the design of any digital programmable computer.  

  The term 'Computer' was first introduced in 1640 and referred to as 'one who calculates'. It was derived from the Latin word 'computare', which meant 'to calculate'. In 1897, it was known as the 'calculating machine'. Later in 1945, the term 'computer' was introduced as 'programmable digital electronic computer, which is now called a 'computer'.

When the computers were introduced, they were large and could fill an entire room. Some computers were operated using large-sized vacuum tubes. In 1833, Charles Babbage (known as the father of the computer) invented an early calculator, which was named as the 'difference engine'. Later in 1837, he introduced the first mechanical, general-purpose computer 'Analytical Engine'. Over time, computers became powerful in performance and small in size.


Analog computer -

During the first half of the 20th century, many scientific computing needs were met by increasingly sophisticated analog computers, which used a direct mechanical or electrical model of the problem as a basis for computation. However, these were not programmable and generally lacked the versatility and accuracy of modern digital computers.[20] The first modern analog computer was a tide-predicting machine, invented by Sir William Thomson (later to become Lord Kelvin) in 1872. The differential analyser, a mechanical analog computer designed to solve differential equations by integration using wheel-and-disc mechanisms, was conceptualized in 1876 by James Thomson, the elder brother of the more famous Sir William Thomson.[16]


The art of mechanical analog computing reached its zenith with the differential analyzer, built by H. L. Hazen and Vannevar Bush at MIT starting in 1927. This built on the mechanical integrators of James Thomson and the torque amplifiers invented by H. W. Nieman. A dozen of these devices were built before their obsolescence became obvious. By the 1950s, the success of digital electronic computers had spelled the end for most analog computing machines, but analog computers remained in use during the 1950s in some specialized applications such as education (slide rule) and aircraft (control systems).


Digital computers -

By 1938, the United States Navy had developed an electromechanical analog computer small enough to use aboard a submarine. This was the Torpedo Data Computer, which used trigonometry to solve the problem of firing a torpedo at a moving target. During World War II similar devices were developed in other countries as well.



Replica of Zuse's Z3, the first fully automatic, digital (electromechanical) computer.

Early digital computers were electromechanical; electric switches drove mechanical relays to perform the calculation. These devices had a low operating speed and were eventually superseded by much faster all-electric computers, originally using vacuum tubes. The Z2, created by German engineer Konrad Zuse in 1939, was one of the earliest examples of an electromechanical relay computer.[21]


In 1941, Zuse followed his earlier machine up with the Z3, the world's first working electromechanical programmable, fully automatic digital computer.[22][23] The Z3 was built with 2000 relays, implementing a 22 bit word length that operated at a clock frequency of about 5–10 Hz.[24] Program code was supplied on punched film while data could be stored in 64 words of memory or supplied from the keyboard. It was quite similar to modern machines in some respects, pioneering numerous advances such as floating point numbers. Rather than the harder-to-implement decimal system (used in Charles Babbage's earlier design), using a binary system meant that Zuse's machines were easier to build and potentially more reliable, given the technologies available at that time.[25] The Z3 was not itself a universal computer but could be extended to be Turing


  

Comments

Popular posts from this blog

Word-processing Package

The term word processing describes use of hardware and software to create, edit, view, format, store, retrieve and print documents (written materials such as letters, reports, books, etc.). A word processing package enables us to do all these on computer system. Commonly supported features: Today's word processing packages normally support the features described below: 1. Entering Text : This feature allows a user to enter text with computer's keyboard. Every character typed on keyboard is displayed immediately on computer's screen. Word wrap feature of word processing software determines when current line is full, and it automatically moves the text that follows to the next line. Hence, only time the user has to press Enter key is at the end of the paragraph. This feature is very useful to those having fast typing speed because they can enter text at their speed, without the need to keep track of where to end a line. 2. Editing Text : This feature allows a user to make cha

Computer Languages - introduction

  This chapter continues with the discussion of development of computer programs. Once a programmer has finished planning of a computer program, he/she is now ready to write the steps of the corresponding algorithm in a programming language.  Computer language or programming language is a language acceptable to a computer system, and the process of writing instructions in such a language is called programming or coding.   The goal of this post is to introduce some popular programming languages.  Analogy with natural languages:   Language is a mans of communication. We use a natural language such as English, to communicate our emotions and ideas to others. Similarly a programmer uses a computer language to instruct computer what he/she want to do.  All natural languages (English, French, German, etc.) use a standard set of words and symbols for communication. Everyone uses that language understands these words and symbols. The set of words allowed in a language is called its vocabulary.

Central Processing Unit

  Central Processing Unit (CPU) A Central Processing Unit is also called a processor, central processor, or microprocessor. It carries out all the important functions of a computer. It receives instructions from both the hardware and active software and produces output accordingly. It stores all important programs like operating systems and application software. CPU also helps Input and output devices to communicate with each other. Owing to these features of CPU, it is often referred to as the brain of the computer. Central Processing Unit CPU is installed or inserted into a CPU socket located on the motherboard. Furthermore, it is provided with a heat sink to absorb and dissipate heat to keep the CPU cool and functioning smoothly. Generally, a CPU has three components: 1. Control Unit 2. Arithmetic Logic Unit 3. Memory or Storage Unit 1. Control Unit : It is the circuitry in the control unit, which makes use of electrical signals to instruct the computer system for executing already

Introduction to Computer

  The word "computer" comes from the word "compute", which means "to calculate". Hence, people usually consider a computer to be a calculating device that can perform arithmetic operations at high speed.  The straightforward meaning of a computer is a machine that can calculate. However, modern computers are not just a calculating device anymore. They can perform a variety of tasks. In simple terms, a computer is a programmable electronic machine used to store, retrieve, and process data. According to the definition, " A computer is a programmable electronic device that takes data, perform instructed arithmetic and logical operations, and gives the output." Whatever is given to the computer as input is called 'data', while the output received after processing is called 'information'. Although the original objective of inventing a computer was to create a fast calculating device, we name define a computer as a device that operates

Computer system architecture

  Computer Architecture  A computer system is basically a machine that simplifies complicated tasks. It should maximize performance and reduce costs as well as power consumption.The different components in the Computer System Architecture are Input Unit, Output Unit, Storage Unit, Arithmetic Logic Unit, Control Unit etc. A diagram that shows the flow of data between these units is as follows − The input data travels from input unit to ALU. Similarly, the computed data travels from ALU to output unit. The data constantly moves from storage unit to ALU and back again. This is because stored data is computed on before being stored again. The control unit controls all the other units as well as their data. Details about all the computer units are − Input Unit The input unit provides data to the computer system from the outside. So, basically it links the external environment with the computer. It takes data from the input devices, converts it into machine language and then loads it into t